Теплопроводность материалов для строительства, основные показатели

Строительство любого дома, будь то коттедж или скромный дачный домик, должно начинаться с разработки проекта. На этом этапе закладывается не только архитектурный облик будущего строения, но и его конструктивные и теплотехнические характеристики.

Теплопроводность – что это

Сам термин «теплопроводность» определяет передачу энергии тепловой от предметов с более высокой температурой – предметам с более низкой. Сам теплообмен осуществляется до тех пор, пока температура обоих предметов не станет одинаковой. Чтобы обозначить энергию тепловую был создан коэффициент теплопроводности, применяемый для строительных материалов. Этот параметр дает четкое понимание того, какое количество энергии тепловой проходит в единицу времени через единицу площади. Чем выше этот показатель – тем лучше теплообмен. Чем меньше теплопроводность материал – тем более он пригоден для строительства жилых и отапливаемых помещений. Согласно строительным нормам толщина стен, препятствующая теплопотерям в зданиях должна соответствовать:

  1. Кирпич — 210 см
  2. Керамзитобетон — 90 см
  3. Дерево — 53 см
  4. Газобетон — 44 см
  5. Минеральная вата — 18 см
  6. Пенополистерол — 12 см

Теплопроводный коэффициент характеризуется показателем количества теплоты, проходящего сквозь метр толщины материала в единицу времени, равную 60 минут. При создании лучшей теплоизоляции профессионалы рекомендуют использовать эту характеристику в обязательном порядке. Также на нее стоит обратить внимание при необходимости подобрать дополнительные утепляющие материалы и конструкции. Рассмотрим соотношение материала и коэффициента теплопроводности, измеренного в Ваттах на метр квадратный Кельвин:

алюминий асбест асфальтобетон асбесто-цементные плиты бетон, желоззобетон битум бронза винипласт вода при температурі вище 0 войлок шерстяной гипсокартон гранит древесина из дуба, волокна размещены вдоль древесина из дуба, волокна размещены поперек древесина из сосны или ели, волокна размещены вдоль древесина из сосны или ели, волокна размещены поперек до 221 Вт/м2 0,151 Вт/м2*К 1,05 Вт/м2*К 0,35 Вт/м2*К до 1,51 Вт/м2*К 0,27 Вт/м2*К 64 Вт/м2 0,163 Вт/м2*К 0,6 Вт/м2*К 0,047 Вт/м2*К 0,15 Вт/м2*К 3,49 Вт/м2*К 0,23 Вт/м2*К 0,1 Вт/м2*К 0,18 Вт/м2*К до 0,15 Вт/м2*К плита древесно-стружечная или плита ориентировано-стружечная железобетон Картон используемый для облицовки Керамзит, плотность 200кг / м3 Керамзит, плотность 800кг / м3 Керамзитобетон, плотность 500кг / м3 Керамзитобетон, плотность 1800кг / м3 Кирпич керамический, пустотелый брутто 1000, плотность 1200кг / м3 Кирпич керамический, пустотелый брутто брутто 1400, плотность 1600кг / м3 Кирпич красный глиняный Кирпич силикатный Кладка из изоляционного кирпича Кладка из обыкновенного кирпича Кладка из огнеупорного кирпича Краска масляная 0,15 Вт / м2К 1,69 Вт / м2К 0,18 Вт / м2К 0,1 Вт / м2К 0,18 Вт / м2К 0,14 Вт / м2К 0,66 Вт / м2К 0,35 Вт / м2К 0,41 Вт / м2К 0,56 Вт / м2К 0,7 Вт / м2К до 0,209 Вт / м2К до 0,814 Вт / м2К 1,05 Вт / м2К 0,233 Вт / м2К

Что такое теплопроводность и термическое сопротивление

При выборе строительных материалов для строительства необходимо обращать внимание на характеристики материалов. Одна из ключевых позиций — теплопроводность. Она отображается коэффициентом теплопроводности. Это количество тепла, которое может провести тот или иной материал за единицу времени. То есть, чем меньше этот коэффициент, тем хуже материал проводит тепло. И наоборот, чем выше цифра, тем тепло отводится лучше.

Диаграмма, которая иллюстрирует разницу в теплопроводности материалов

Материалы с низкой теплопроводностью используются для утепления, с высокой — для переноса или отвода тепла. Например, радиаторы делают из алюминия, меди или стали, так как они хорошо передают тепло, то есть имеют высокий коэффициент теплопроводности. Для утепления используются материалы с низким коэффициентом теплопроводности — они лучше сохраняют тепло. В случае если объект состоит из нескольких слоев материала, его теплопроводность определяется как сумма коэффициентов всех материалов. При расчетах, рассчитывается теплопроводность каждой из составляющих «пирога», найденные величины суммируются. В общем получаем теплоизоляцонную способность ограждающей конструкции (стен, пола, потолка).

Теплопроводность строительных материалов показывает количество тепла, которое он пропускает за единицу времени

Есть еще такое понятие как тепловое сопротивление. Оно отображает способность материала препятствовать прохождению по нему тепла. То есть, это обратная величина по отношению к теплопроводности. И, если вы видите материал с высоким тепловым сопротивлением, его можно использовать для теплоизоляции. Примером теплоизоляционных материалов может случить популярная минеральная или базальтовая вата, пенопласт и т.д. Материалы с низким тепловых сопротивлением нужны для отведения или переноса тепла. Например, алюминиевые или стальные радиаторы используют для отопления, так как они хорошо отдают тепло.

Теплопроводность древесины при различной влажности и плотности

В таблице приведены значения теплопроводности любого типа древесины независимо от породы дерева в зависимости от плотности при различной объемной влажности. Данные приведены при положительных и отрицательных температурах вдоль и поперек волокон

древесины.

Теплопроводность древесины при различной влажности и плотности

Для деревообработки используются гораздо меньше энергоресурсов, чем для других строительных материалов.

  • В 4 раза меньше, чем для бетона.
  • В 6 раз меньше, чем для пластмассы.
  • В 24 раза меньше, чем для стали.
  • В 126 раз меньше, чем для алюминия.

Дерево в 6 раз больше изолирующего, чем кирпич, и в 15 раз больше изолирующего, чем бетон, что приводит к значительной экономии тепла. Например, среднее потребление энергии шведской семьей на 50% ниже, чем у французской семьи. Отмечается, что расчетное значение для этого типа стены ниже, что обеспечивает отличную теплоизоляцию. Теплопроводность в таблице указана для древесины с плотностью (объемным весом) от 400 до 800 кг/м 3 . Теплопроводность дана при объемной влажности древесины в пределах от 0 до 30 %.

Теплопроводность древесины при различной влажности и плотности

При увеличении плотности и влажности древесины ее теплопроводность возрастает, как вдоль, так и поперек волокон дерева. Значение теплопроводности древесины представлено в таблице в диапазоне от минимального до максимального. Размерность теплопроводности . Например, при положительных температурах и влажности 20%, максимальная теплопроводность древесины плотностью 400 кг/м 3 будет равна 0,438 Вт/(м·град).

Для сравнения, бетонная стена для достижения тех же теплоизоляционных свойств должна иметь толщину более 2, 5 метров! По этим причинам затраты на отопление зимой или кондиционирование летом в доме на сэндвич-древесине значительно ниже, чем в обычных зданиях. Комфорт дома дополняется звукоизоляцией, прямо пропорциональной деревянным и тепловым сооружениям.

Комфорт древесины Деревянная конструкция улучшает комфорт людей, живущих в ней из-за того, что стены не холодные и влажные. Кроме того, при строительстве из древесины вы получаете около 5-7% полезной поверхности по отношению к мокрому зданию. Кроме того, древесина позволяет отличную архитектурную свободу при дизайне вашего дома.

Теплопроводность древесины при различной влажности и плотности

Что такое теплопроводность?

На стадии проектирования любого дома, солидного коттеджа или дачной постройки наряду с архитектурными и конструктивными решениями, закладываются технические и эксплуатационные характеристики строения. Теплотехнические значения постройки напрямую зависят от материалов, из которых она возведена.

В соответствии со СНип 23-01-99, СНиП 23-02-2003, СНип 23 -02-2004 разработаны

технологии обеспечения климатологии, тепловой защиты жилья, а так же правила их проектирования. Созданы таблицы теплопроводности, полезные при определении критериев материалов для создания благоприятного микроклимата в зависимости от их показателей теплопроводности.

Показатели теплопроводности строительных материалов

Под теплопроводностью понимается физический процесс передачи энергии от нагретых частиц к холодным до наступления теплового равновесия, до того как сравняются температуры. Для жилого строения процесс теплопередачи определяется время выравнивания температуры в нутрии его и снаружи. Соответственно, чем длительнее процесс выравнивания температур (зимой – охлаждения, летом – нагревания), тем выше показатель (коэффициент) теплопроводности.

Коэффициент это показатель количества тепла, которое за единицу времени теряется, проходя через поверхность стен. Чем выше, тем больше теряется тепла, чем ниже, тем лучше для жилого дома.

Читайте также:  Чем лучше отделать стены дома снаружи

Важно!Задача проектирования в том, чтобы подобрать материалы с наиболее низким коэффициентом теплопроводности для возведения всех строительных конструкций

Теплоемкость и теплопроводность материалов

Теплопроводность – это физическая величина материалов, описывающая способность проникновения температуры с одной поверхности стены на другую.

Теплоемкость и теплопроводность материалов

Для создания комфортных условий в помещении необходимо, чтобы стены обладали высоким показателем теплоемкости и низким коэффициентом теплопроводности. В этом случае стены дома будут в состоянии накапливать тепловую энергию окружающей среды, но при этом препятствовать проникновению теплового излучения внутрь помещения.

Теплопроводность штукатурки

Теплопроводность — это процесс переноса энергии от теплой части материала к холодной частицами этого материала (т.е. молекулами). Надо помнить, что это только один из «источников» потерь тепла: хотя, например, вакуум имеет нулевую теплопроводность, энергия может передаваться излучением.

Основные значения коэффициентов теплопроводности я взял из СНиП II-3-79* (приложение 2) и из СП СНиП 23-02-2003. Таблицу я дополнил значениями теплопроводности, которые взял с сайтов производителей строительных материалов (например, для ККБ, пеностекла и других).

Теплопроводность некоторых (но не всех) строительных материалов может значительно меняться в зависимости от их влажности. Первое значение в таблице — это значение для сухого состояния. Второе и третье значения — это значения теплопроводности для условий эксплуатации А и Б согласно приложению С СП Условия эксплуатации зависят от климата региона и влажности в помещении. Проще говоря А — это обычная «средняя» эксплуатация, а Б — это влажные условия.

Теплопроводность древесины и строительных материалов, строительных металлов, инея, льда и снега.

Теплопроводность древесины и строительных материалов, строительных металлов, инея, льда и снега.

Теплопроводность древесины (при -30/+40°C):

Теплопроводность древесины .

Береза 150
Дуб (поперек волокон) 200
Дуб (вдоль волокон) 400
Ель 110
Кедр 95
Клен 190
Лиственница 130
Липа 150
Пихта 150
Пробковое дерево 45
Сосна (поперек волокон) 150
Сосна (вдоль волокон) 400
Тополь 170

Коэффициенты теплопроводности строительных металлов (при -30/+40°C) . Теплопроводность строительных металлов.

Материал в 10 -3 Вт/(м·К) = в мВт/(м·К)
Сталь 52000
Медь 380000
Латунь 110000
Чугун 56000
Алюминий 230000
Дюралюминий 160000

Коэффициенты теплопроводности инея, льда и снега. Теплопроводность инея, льда и снега.

Материал в 10 -3 Вт/(м·К) = в мВт/(м·К)
Иней 470
Лед 0°С 2210
Лед -20°С 2440
Лед -60°С 2910
Снег 1500
Теплопроводность строительных материалов (при -30/+40°C): Теплопроводность строительных материалов.
Алебастр 270 — 470
Асбест волокнистый 160 — 240
Асбестовая ткань 120
Асбест (асбестовый шифер) 350
Асбестоцемент 1760
Асфальт в крышах 720
Асфальт в полах 800
Пенобетон 110 — 700
Бакелит 230
Бетон сплошной 1750
Бетон пористый 1400
Битум 470
Бумага 140
Железобетон 1700
Вата минеральная 40 — 55
Войлок строительный 44
Гипс строительный 350
Глинозем 2330
Гранит, базальт 3500
Грунт сухой глинистый 850 — 1700
Грунт сухой утрамбованный 1050
Грунт песчаный сухой =0% влаги / очень мокрый =20% влаги 1100 — 2100
Грунт сухой 400
Гудрон 300
Железобетон 1550
Известняк 1700
Камень 1400
Камышит 105
Картон плотный 230
Картон гофрированный 70
Кирпич красный 450 — 650
Кладка из красного кирпича на цементно-песчаном растворе 810
Кирпич силикатный 800
Кладка из силикатного кирпича на цементно-песчаном растворе 870
Кладка из силикатного одиннадцатипустотного кирпича 810
Кирпич шлаковый 580
Кладка из керамического пустотного кирпича (1300 кг/м3) 580
ПВХ поливинилхлорид — «сайдинг» 190
Пеностекло 75 — 110
Пергамин 170
Песчаник обожженный 1500
Песок обычный 930
Песок 0% влажности — очень сухой 330
Песок 10% влажности — мокрый 970
Песок 20% влажности — очень очень мокрый 1330
Плитка облицовочная 10500
Раствор цементный 470
Раствор цементно-песчаный 1200
Резина 150
Рубероид 170
Сланец 2100
Стекло 1150
Стекловата 52
Стекловолокно 40
Толь бумажный 230
Торфоплита 65 — 75
Фанера 150
Шлакобетон 700
Штукатурка сухая 210-790
Засыпка из гравия 360-930
Засыпка из золы 150
Засыпка из опилок 93
Засыпка из стружки 120
Засыпка из шлака 190 — 330
Цементные плиты, цемент 1920
Читайте также:  Дом из керамзитобетонных блоков плюсы и минусы

Понятие теплопроводности на практике

Теплопроводность учитывается на этапе проектирования здания. При этом берется во внимание способность материалов удерживать тепло. Благодаря их правильному подбору жильцам внутри помещения всегда будет комфортно. Во время эксплуатации будут существенно экономиться денежные средства на отопление.

Утепление на стадии проектирования является оптимальным, но не единственным решением. Не составляет трудности утеплить уже готовое здание путем проведения внутренних или наружных работ. Толщина слоя изоляции будет зависеть от выбранных материалов. Отдельные из них (к примеру, дерево, пенобетон) могут в некоторых случаях использоваться без дополнительного слоя термоизоляции. Главное, чтобы их толщина превышала 50 сантиметров.

Особенное внимание следует уделить утеплению кровли, оконных и дверных проемов, пола. Сквозь эти элементы уходит больше всего тепла. Зрительно это можно увидеть на фотографии в начале статьи.

Свойства различных типов блоков

Красный керамический

Пористость увеличивает теплосопротивление стройматериалов, поэтому у полнотелого кирпича теплопроводность выше.

Этот вид стройматериалов является популярным и доступным. Состоит из глины и других добавок. Этими строительными материалами возводится несущая конструкция, облицовываются или утепляются стены старого дома, а также сооружаются заборы и укладывается фундамент. Изделие отличается высокой прочностью и долговечностью. Теплопроводность керамического кирпича зависит от разновидности. Лучшим вариантом для утепления дома является использование пустотелого кирпича. Чем больше степень пустотелости, тем меньше изделие способно проводить тепло. Кирпичная стена может укладываться в один или два ряда. Кроме этого, стройматериал обладает такими свойствами, как:

Свойства различных типов блоков
  • прочность;
  • морозостойкость;
  • огнеупорность;
  • звукоизоляция.

Клинкерный

Эта разновидность красного керамического стройматериала чаще всего применяется для облицовочных работ, укладки тротуаров. Это обусловлено его высокой теплопроводностью. Она достигает 1,16 Вт/м°С. Уменьшения этого показателя удается достичь у пустотелых образцов. При строительстве дома из таких блоков необходимо использовать дополнительные методы утепления. Большая плотность изделия придает ему дополнительной влаго- и морозостойкости. Облицовочный кирпич широко используется для декоративной отделки домов снаружи и внутри.

Характеристика шамотного

Так как этот вид стройматериала характеризуется высокой способностью проводить тепло, его чаще применяют при возведении каминов, печей. Этим обусловлено его название «печной кирпич». В таком случае теплопроводность шамотного кирпича играет решающую роль в выборе материалов для стройки. Подобные свойства помогают экономить энергию для обогрева помещения. Кроме этого, шамотный кирпич обладает такими свойствами, как:

  • огнеупорность;
  • устойчивость к перепадам температуры;
  • высокая теплопроводность;
  • легкий вес;
  • устойчивость к воздействию щелочей и ряда кислот;
  • прочность;
  • эстетичность.
Свойства различных типов блоков

Силикатный

Этот вид стройматериала ценится прочностью, экологичностью и звуконепроницаемостью. Но теплопроводность кирпича этого типа не завышена, поэтому помещения из него требуют дополнительного утепления. Силикатные блоки делают из смеси песка и извести с добавлением связующих компонентов, которые прессуются и впоследствии подвергаются обжигу. Самым распространенным является изделия марки М100. Различают рядовой и лицевой силикатный кирпич. Каждый из них имеет свою сферу применения. Кроме этого, материал способен впитывать влагу, что не позволяет использовать его в местах с повышенной влажностью и при строительстве фундамента.

Особенности теплопроводности бетона

Теплопроводность бетона — одна из важных характеристик строительного материала наряду с прочностью, плотностью и морозостойкостью. Ее учитывают в теплотехническом расчете для определения минимальной толщины наружных стен. Ограждающие конструкции в первую очередь защищают внутренние помещения от холода и промерзания. Особенно важно это для отапливаемых зданий, когда для обогрева расходуются значительные средства. Установлено, что от 20 до 30% тепла уходит через стены и перекрытия.

Строительство в разных климатических зонах предполагает эксплуатацию зданий при большом интервале внешних температур. Определение минимально необходимой толщины наружной конструкции с учетом теплотехнических свойств бетона экономически целесообразно. Это позволяет существенно сократить затраты на возведение и обогрев сооружения в отопительный сезон.